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Abstract-The solution for the temperature profile is obtained on the basis of the superposition principle or 
by the use of Green’s function when the wall temperature (or heat flux) profile is a function of axial distance in 
a section between two infinitely long uniform temperature (or adiabatic) wall inlet and outlet sections. It is 
confirmed that the solution satisfies numerically the matching conditions which are imposed on the 
temperature and its axial derivative at each end of the main heat transfer section. In addition, it is suggested 
that the expansion theory employed here can be. generalized easily for a generalized Sturm-Liouville system. 

NOMENCLATURE 

A, matrix defined by equation (34); 
A Ill, coefficient defined by equation (13) ; 
a, lower limit of y; 

ai.j.k, coefficient in equation (A9); 
a mr series expansion coefficient in equation 

(5) or (!7); 

a:, = a, exp ( - i.,L) ; 
B In7 coefficient defined by equation (16) or 

(21); 
b, upper limit of y ; 

bi.j.k, coefficient in equation (A9); 
bi,, ( = b,), series expansion coefficient in equation 

(Al); 
b IfI, 

4, 
C my 

c Ill, 

diY 

F+i(Y), 
f (x)9 
_t(Y)v 

G(xs Y), 
H+i(Y), 
ha, h,, 
h(x), 
MYX 

series expansion coefficient in equation 

(5) or (17); 
= b, exp( - 1,,L) ; 
coefficient defined by equation (29); 
series expansion coefficient in equation 
(10) or (35); 
coefficient defined by equation (A2); 
function of y defined by equation (28); 
arbitrary function of x ; 
solution of recurrence differential equa- 
tion (8); 
Green’s function ; 
function of y defined by equation (28); 
constants in equation (31); 
arbitrary function of x ; 
solution of recurrence differential equa- 
tion (19); 

Ii.jl coefficient defined by equation (A4); 
J,(aiy), J,(cl,y), Bessel functions; 
L =1/r, Pe, dimensionless length of main 

heat transfer section ; 
I, length of main heat transfer section ; 
Pe, = Zr,uJu,, Peclet number; 
P(Y)* function of y; 

R,(J.), function of 1. defined by equation (A6) ; 

r, 
rol 
T, 
T M’ 
s(Y)? 
u Ill, 
v, 
ui(Y)3 
X, 
Y my 
Y, 
2 II0 
2, 

radial distance; 
tube radius; 
dimensionless temperature; 
dimensionless cup-mixing temperature ; 

function of y; 
mean axial velocity; 
arbitrary vector ; 

arbitrary function of y; 
= z/rope, dimensionless axial distance ; 
eigenfunction ; 
=r/ro, dimensionless radial distance; 
vector defined by equation (34); 
axial distance. 

Greek symbols 
thermal diffusivity ; 
root defined by equation (A2); 
Kronecker’s delta ; 
Dirac’s delta function ; 
eigenvalue. 

1. INTRODUCTION 

THE PROBLEM of steady-state heat transfer with axial 
conduction in laminar flow in a circular tube has been 
solved analytically [l-4] or numerically [5-71 when 
the wall temperature profile is a step function [l, 2,5, 
63, when the wall heat flux profile is a step function [3, 
5,6], or when the wall temperature profile is uniform in 
an infinitely long outlet section with an infinitely long 
adiabatic wall inlet section [4, 6, 71. These wall 
conditions are reasonable physically. In most indus- 
trial heat transfer problems, however, the wall temp 
erature or heat flux profile is a function of axial 
distance, and the length of the main heat transfer 
section is finite. Because of this point of view, the 
present study aims at obtaining an exact solution to 
the problem of steady-state heat transfer with axial 
conduction in laminar flow in a circular tube with a 
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specified temperature (or heat flux) wall in a section 
between two infinitely long uniform temperature (or 
adiabatic) wall inlet and outlet sections. 

An exact solution for the temperature profile is 
obtained on the basis of the superposition principle 
when the wall temperature or heat flux profile in the 
main heat transfer section can be expanded in a power 
series of axial distance. On the other hand, a similar 
problem for slug flow in a coaxial annulus has been 
solved by use of Green’s function [8], and this 
approach is available for solving problems of this sort 
whether the velocity profile is uniform or not. Hence, 
another solution is obtained by use of Green’s function 
which is derived from the solution with a uniform 
temperature or heat flux wall condition in the main 
heat transfer section. It is, of course, confirmed that 
both solutions are identical when the wall temperature 
or heat flux profile in the main heat transfer section can 
be expanded in a power series of axial distance. It is. in 
addition, confirmed that the solution satisfies numeri- 
cally the matching conditions which are imposed on 
the temperature and its axial derivative at each end of 
the main heat transfer section. 

2. BASIC EQUATIONS 

The governing heat transfer equation is, in dimen- 
sionless form, given as follows, e.g. [3] : 

with 

(2) 

When the wall temperature profile is a function of axial 
distance in a section between two infinitely long 
uniform temperature wall inlet and outlet sections, the 
boundary conditions are given as 

(T), , = Jo> 
(z < 0, .X > f.). 

u‘(-~h (O<.Y<L). 

(7-L Tll = 0. (O~Syst)), (Case 1). (3) 

When the wall heat flux profile is a function of axial 
distance in a section between two infinitely long 
adiabatic wall inlet and outlet sections, the boundary 
conditions are given as 

(T),= + T’ = 4 h(x)dx, (05~5 l),(Case 2). (4) 

Hence, equation (1) with equation (2) is to be solved 
with equation (3) or (4). 

3. ‘THEORETICAL AhALbSIS 

3.1. A sohtiorl based OH rhr suprrpos!tior! prrwiple 

The solutions for j’(u) = X” (II = 0. 1, ) are nou 
sought in the form 

(T) 1 ,,. = i: a,exp(-j,,u)Y,,(!,). (5, 
m I 

Here, i,, and Y,(y). respectively, are the eigenvalues 
and eigenfunctions of the following boundary value 
problem : 

= 0, (Y,), J = 0% (m- kl, +2, .._I. 
P 0 

where 

i m CO, i,,>O. (m= I. 

In addition, f;(y) are the solutions 
recurrence differential equations : 

(6) 

‘. .). (71 

of the following 

=O, (j;), , =O, (i- 1. 2, 1. (8) 

where 

.f- I(?‘) = 0, to(y)= i. (9) 

It is evident that the solutions assumed by equation 
(5) satisfy equations (l), (2), and (3) for,f(.x) I= .Y” (n = 
0, 1,. .). Hence, the complete solutions are determined 
on the basis of the matching conditions which are 
imposed on the temperature and its axial derivative at 
Y = 0 and x = L. In this case, the expansion technique 
commonly used for the Sturm-Liouville system can- 
not be utilized because the present eigenfunctions lack 
the classical orthogonality properties. However, the 
following technique presented by Smith et al. [9] is 
available. 

The differential system given by equation (6) has an 
infinite number of not only positive but also negative 
eigenvalues. Hence, not one but two arbitrary func- 
tions of y, al(y) and am, which are quite irrelevant 
to each other can be expanded as 

I, 

v2(y) = ‘x i,,c,Y,(y), (O<y<lI. (10) 
m-f1 
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In addition, the present eigenfunctions have the fol- 
lowing properties which can be derived easily from 
equation (6): 

+ 1-y’ yY,Y,dy=O, 

(m#s; in, s= +1, +2, . ..). (11) 

This allows for a term-by-term calculation of the series 
expansion coefficients in equation (10) as follows [9] : 

1 i 
c, = 

i I( 0 
$ + 1 - YZ h(Y) + +p(Y) 1 I 

3.2. Another solution based on Green’s function 
Green’s function, G(x, y), defined as the solution for 

f(x) or h(x) = 6(x) where 6(x) is the Dirac delta 
function, and is derived from the following formula 

PI : 

G(x, y) = lim 7(x, y) for f(x) or h(x) = A. (22) 
L-O 

Hence, Green’s function for Case 1 or Case 2 is 
obtained as 

G(x<O, y) = i B- mexp(-LA Y-,(Y), 
m=l 

where 

x yY,dy/A,, (m = f 1, &2, . ..). (12) 

’ 21 
A,,,= si 2 + 1 - y2 yY;dy, (m= +l, 42, . ..) . 

o Pe2 i 
(13) 

In the present case, the following further relations are 
derived from equations (6), (8), and (9) with the aid of 
integration of parts: 

1 s K 0 
$j + 1-v2)fi -&h-l 1 YYmdy 

= (dYt,JW, = 1 

(-i,,)‘+’ ’ 
(i=O, 1, . ..). (14) 

Hence, the series expansion coefficients in equation 
(5) are determined finally as 

J%l 
bm = n!(_i,r”, 

(m = 1,2, . ..). (15) 

where 6,,i is Kronecker’s delta, and 

a: = a,exp(-i,L), bl,=b_,exp(-I,_,L), 

B +m = (dY,,,,/dy)y=,lAi-,,,v (m=l, 2, . ..I (16) 

In the same way as described above, the solutions for 
h(x) = x” (n = 0, 1, .) are obtained as shown in Table 
1, equations (17)-(21). 

As mentioned above, the solutions forf(x) or h(x) = 
x” (n = 0, 1, . ..) are obtained on the basis of the 
superposition principle. Hence, a solution for arbitrary 
f(x) or h(x) is obtained by superposing these solutions 
again whenf(x) or h(x) can be expanded in a power 
series of x. 

G(x>O, y) = - c B,exp(-L,x)Y,(y), (Case 1), 

G(x<O, y) = - c B_,exp(-).-,x)Y-,(y), 
Ill=1 

i,i 
G(x > 0, y) = 4 + 1 B, exp( - i.,x)Y,(y), 

In=1 

(Case 2). (23) 

Further, it is evident that the following formula 
provides a solution for arbitrary j(x) or h(x) [S] : 

ux, Y) = 
I 

1. vcr, or W]G(x - t, YkK (24) 
0 

Hence, another solution for arbitrary f(x) or h(x) is 
obtained as shown in Table 2, equations (25) and (26). 

3.3. Comparison of both solutions 
The matching conditions which are imposed on the 

temperature and its axial derivative at x =0 and x = L 
provide the following formulae (note that the 
formula forfo(y) is not valid at y = 1): 

F-i(Yj =.L-l(Y)-F+i(Y)9 (Case 11, 

H-i(Y) = -4hi(Y)-H+i(Y), (Case 21, 

(O$ysl; i=O, 1, . ..). (27) 

where 

Fti(Y) 0’ H,,(Y) = mtl & YelsY)~ 
‘fm 

(i = 0, 1, .). (28) 

On this basis, it is easily confirmed that both solutions 
mentioned above are identical whenf(x) or h(x) = x” 
(n = 0, 1, . . .). Hence, it is evident that both solutions 
for arbitraryf(x) or h(x) also are identical whenf(x) or 
h(x) can be expanded in a power series of x. 

4. CALCULATED RESULTS 

The differential system given by equation (6) or (18) 
can be solved by means of Galerkin’s method (e.g. 
[lo]) (see Appendix I), and the first 30 positive and 
negative eigenvalues and their corresponding eigen- 
functions were calculated for Pe = l-100 and ~0 



The complete solutions: 

Table 1. The solutions for h(x) = I” (n = 0, 1, .) 
- - _.-_ .-_. -..._. -_ .~_ ~~___ _ 

The differential system for Y,,,(y) (,I, > 0 for m > 0, and i.,,, < 0 for m < 0): 

The differential system for h,(y) [h.. I(y) = 0, and h,(y) = I:]: 

The series expansion coefficients in equation (17); 

where 

yY;dy, (m = _tt. -F_3, . ..t. 

(note that no negative eigenvalue exists for Fe = / ). 
Some sample values of them are shown in Table 3 
where C,, _ represent the foflowing coefficients which 
are required to calculate the cup-mixing quantities: 

c 4 tnt = 
? 
“(l-yZ)yY,indg. (m=1,2,...)@9) 
0 

The differential system given by equation (8) or (19) 
can easily be solved in order (see Appendix II), and the 
first 20 solutions were determined. The first three of 
them are shown in Table 4, equation (30). 

To check the validity of equation (27), F+,(y) or 

(20) 

_____ .._ _.__ - .-__...__ ---.- 

H ,,,,(~a) were calculated by employing the first 30 
positive and negative eigenvalues and their corres- 
ponding eigenfunctions. In this case, it is clear from 
Table 3 that the direct sums for F,,(O) [or W,,,(O)l 
diverge (or converge slowly). In such acase, these sums 
were calculated with the aid of Euler’s transformation. 
As Table 5 shows, the calculated results support the 
validity of equation (27), namely, the fact that the 
present solutions satisfy the required matching 
conditions. 

Some sample axial temperature profiles forf’(s) = i 
and Fe L = 1 are shown in Fig. 1 (Pe = 1) and Fig. 2 

Table 2. A solution for arbitraryf{x) or II(X) based on Green’s functmn 
_______._. .._~.____ . . . _. _,_ ~~__. ._.__.~_ . . __ _ ~~~_-_---_~.~. . - 

A solution for Case 1 : 

-1 

(T)~_,,,~.= i  {s __“, u_,,,(y) [“f(:)eq$-i “__,, ,(.r-5)]d5-&Y,(y) 1 S(C)expl-i.,(*-C)ld5i. 
m mm 1 .\ .o 

A solution for Case 2: 

Xh(5)d<- 

* 

i {LY-,(I’! 
11. 

(T),..,.:, = 4 
s i 

h(j)exp[-I._,(~-5)]dE_B,Y,(y) 
.r 

h(&xp[-d,(r-i;)]d<:. (26) 
n In=, V 0 

_-~._---..-- . __._.~__.~.-^..-.. ____ _ __._. _._.___-.._ ..---- .--- 
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Table 3. Some sample eigenvalues and their corresponding eigenfunctions 

1827 

RI x B c s_&.,(O) Am 
BC 

-m -m -m mm B,Ym( 0 > 

( Pe = 

1 

: 
4 

z 
7 
8 
9 

10 

1, Case 1) 

-2.825296819 1.1983963S6 l-946490838 2.044367805 -1. ~3~870 -1.865019072 

-5.876321504 O.OG’fffi2400 -3.011985658 5.187344037 -0.131583256 2.858906794 

-8.999200814 0.0172S4568 3.748840450 8.323450740 -0.032769752 -3.614852901 

-12.1329221SO 0.007519921 -4.35944S664 11.461365119 -0.012256897 4.241474748 

-15.270218160 0.003916943 4.893581545 14.600502245 -0.005795557 4.787509681 

-18.409114200 0.0022SS366 -5.374589837 17.740366285 -0.003174201 5.277582209 

-21.548860083 0.003.452416 5.ax813910 20.880683005 -0.001920501 -5.725953836 

-24.689110037 O.OOQ97?893 -6.225776794 24.021297527 -0.001248214 6.141720029 
-27.829683042 0.000689404 6.610324012 27.162117437 -0.000856159 -6.531092412 
-30.970475310 0.000504059 -6.973674810 30.303084627 -0.000612403 6.898533225 

(Pe=l, Case 2) 

1 -0.497420129 
2 -4.18747650 
3 -7.35923114 
4 -10.51363651 

2 
-13.66216276 
-16.8080863 

7 -19.9526377 
8 -23.9963788 
9 -26.2396019 

10 -29.3824740 

(Pe=lO, Case 1) 

1 -74.767174 
2 -103.90065 
3 -128.93675 
4 -157.58366 
5 -187.52746 
6 -218.01950 
7 -248.80081 
8 -279.75391 
9 -310.81.740 

10 -341.9560 

( Pe = 10, Case 2) 

1 -37.16544 
2 -90.5368 

-115.1829 -0.296891 
-142.4609 0.052200 

5 -172.0226 
6 -202.3683 
7 -233.0831 
8 -264.0034 
9 -295.0502 

10 -326.1805 

-4.02025736 -3.95802775 
0.15421007 0.61364041 
0.02086588 -0.4623SOQ8 
0. SO698184 0.38693342 
0.~315783 -0.33929440 
O.OOl.6BO77 0.30583401 
0.00100930 -0.28066730 
0. ~5022 0.26084759 
O.OOS44323 -0.24471354 
0.00031558 0.23124746 

25.023882 
-7.298478 

1.311657 
-0.091190 

0.000414 
0.001032 
0.001924 
0.002021 
0.001864 
0.001640 

-4.384436 
I.368829 

0.014117 
0.009437 
0.066223 
o.OS4304 
0.003092 
0 *i-IO2292 

3.51896151 
6.69229402 
9.84684830 

12.99542546 
16.1413733 
19.2a59383 
22.4296877 
25.5729164 
28.7157924 
31*8584185 

-0.127884432 -0.670288838 
-0.024810121 0.485425699 
-0.008180993 -0.399825689 
-0.003607344 0.347892213 
-0.001891948 -0.312087755 
-0.0011116B6 0.285478154 
-0.000707524 -0.264696388 
-0.C004776QQ 0.247883206 
-0.000337525 -0.233916677 
-0. ooO247233 0.222074219 

8.0693495 
-24.192085 

39.133948 
-46.743543 

52.326352 
-57.12745 

61.45626 
-65.45043 

69.18707 
-72.71542 

6.744048933 
30.767918207 
59.503463202 
89.476677963 

119.97261248 
150.75037263 
181.69864606 
212.75772822 
243.89269650 
275.08181599 

-5.191258484 -9.306439446 
-2.100393724 20.922QQ6501 
-0.873505642 -29.341380841 
-0.378694205 36.376232247 
-0.177008213 42.475034043 
-0.090425105 47.88330553 
-0.050299462 -52.77092908 
-0.030l.30571 57.2552073 
-0.019199782 -61.4180604 
-0.012873054 65.3181sQO 

-1.246671 18.78794265 -0.332491227 -5.913241447 
1.. 663630 45.43800310 -0.217767Q61 5.074856877 

-2.817626 74.52727490 -0.10625QBl3 -4.298799120 
3.043088 104.64084529 -0.052264679 3 * 73578566o 

-2.887614 135.23611865 -0.027743463 -3.329769878 
2.708599 166.08835661 -0.015983339 3.02584923 

-2 .%I6517 197.09291050 -0.OO98908.58 -2.78942128 
2.405368 228.1951571 -0.006492240 2.59948762 

-2.282953 259.3638590 -0.004470487 -2.44290679 
2.176228 290.5798502 -0.00320089Q 2.3111043 

(Pe = lO);~o~for~(x)= PeandPe*L= l,inFig.3 
(Pe = 1 and 10); and some sample cup-mixing tem- 
perature profiles, in Fig. 4 [f(x) = 1] and Fig. 5 [h(x) 
= pe]. In either case, it can be observed that the fluid 
in the entrance section (x < 0) is preheated more easily 
for smaller Peelet number flow, and the fluid tempera- 
ture in the exit section (x > L) approaches its terminal 
temperature more slowly for larger Peclet number 
ilow. 

5. DISCUSSlON 

The present results forf(x) or h(x) = 1 and L = J; 

or for h(x) = S(x) were compared with the tabulated 
results of Jones [l, 2,l l] and with the graphical results 
of Hsu [3], Hennecke [5], and Verhoff and Fisher [S]. 
In this case, it was confirmed that the present re- 
spective results are in good agreement with the cup- 
mixing temperature profiles forf(x) = 1 in [l, 2,5,6], 
for h(x) = 1 in [S], and for h(x) = 6(x) in [ll], with the 
radial temperature profiles at x = Oforf{x) = 1 in [S] 
and for h(x) = 6(x) in [ll], and with the Nusselt 
number profiles forf(x) = 1 and Pe * x > 0.1 in [ 1,2,5, 
61 and for k(x) = 1 in [3, S]. It was observed, however, 
that the present Nusselt numbers for f(x) = 1 and 
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Table 4. The first three solutions of equation (8) or (19). 

h,(y) 
45659 9 

= - -------+f----_~ 
309657600 10240’ 

2 

0 

-4h,(v) - H+,(y) 

H-,(Y) 
-1 

1 

2 

Table 5. Confirmation of the validity of equation (27) 

PC 

1 
10 

1 
10 

1 
10 

1 
10 

1 
10 

1 
10 

Cup-mixing 
value v-0 

-9.2 x l0-h 5.3 x lo-& 
-- 1.3 X lo- ‘& 2.9 X 10-e 

9.1 X 10 -h 3.9 x lo-” 
2.9 x lo-’ - 1.1 X 10-n 

-6.3 x lo-” 1.2 X lo- In 
-4.7 X 10 ~ 4.1 X lo-” 

5.4 X 10 9.3 X 1omy 
6.5 x lo- 5 3.7 X 10-h 

-2.6 x 10 - - 1.5 x 10 I0 
-2.0x lo-5 -7.2x1O‘R 

1.9XlO~” -1.1 X lo-“” 
7.9 X 1o-x 6.Xx lo-8 

x=0.25 y==O.S y=O.75 

2.1 X lo-3 -7.6~10“ 9.3 x l0-h 
-1.4x10-’ -2.3 x 10.’ 6.5 X lo-h 

- 1.6 x lO-4 
-1.2x10-” 

-3.8x1o-5 
-1.5x10-” 

1.8 x lo-” 
1.1 x to-3 

-2.2xlO~” 
1.8 X 10-S 

-6.0 x lo-’ 
3.6 x l0-h 

-3.7 X 1o-h 

-2.2x 10~ ̂  

1.1 x lo-” 
- 1.9 X lo- 

-1.6x lo- 
5.9rlWh 

3.0 x II) -j 

9.6 X 10 T 

1.6 x lo-” 
1.2 x 10-5 

-1.4. lo-- 
1.5 x 1OP 

-2.1 X 10 4 
-5.3X10-H 

_ 2.5 X 10 ” 
5.5 X 10-6 

.~ ~ 

-9.1 X lo-- 
-5.0x 10~ i 

6.7 x 10 IL 
-6.4 x 10 f’ 

Pe .X < 0.1 are lower than those obtained by Hen- expansion coefficients On the other hand, Jones 
necke [5] and higher than those obtained by Jones [2], 
and that the present radial temperature profiles at x =0 
for h(x) = 1 are higher than those obtained by 
Hennecke [ 51. 

The form of Hsu’s solution [3] is identical with that 
of the present one for h(x) = 1 and L = / , and he 
determined the series expansion coefficients with the 
aid of a Gram-Schmidt orthonormalization pro- 
cedure. This technique, however, is unnecessarily 
complicated in comparison with the present one which 
allows for a term by term calculation of the series 

analyzed the problem for h(x) = 1 and L = -x. [ 1,2] or 
h(x) = 6(x) [ll] by employing a two-sided Laplace 
transform. Although he obtained only the asymptotic 
solution at low [2, 1 l] or high [l] Peclet number, it is 
confirmed that his solution is equivalent to the present 
one. 

The most significant part of the present analysis is in 
the expansion theory given by equations (lo)--(13). 
Agrawal [12] seems to be the first to employ the 
expansion technique given by equation (12) though he 
did not describe explicitly. After that, Deavours [13] 
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Frc. 1. Some sample axia1 temperature profiles forf(x) = 1 and Pe . L = 1 (Pe = 1). 

FIG. 2. Some sample axial temperature profiles forf(x) = 1 and Pe *L. = 1 (Pe = 10). 

7 

5 

+ 

0 
-1 0 Pe*x 1 2 

FIG. 3. Some sample axial temperature profiles for h(x) = Pe and Pe .L. = 1 (Pe = 1 and 10). 
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FIG. 4. Some sample cup-mixing temperature profiles [f(s) = 13. 

Pe.x 

Fit,. 5. Some sample cup-mixing temperature profites [h(s) = PC]. 

developed an expansion theory which is essentially 
equivaIent to that developed by Smith et ui. [9]. 
However, the latter is more intended for practical use. 
Hence, the latter was employed here. Further, this 
theory can be generalized easily as follows. 

The differential system given by equation (6) or (18) 
is generalized as 

(m = 1.2, . ..f. 131) 

In this case, it can be confirmed easily that the 
eigenfunctions have the following properties: 

(m#s; wt. s=l. 2. . ..). (32) 

or 

“h 

z,‘Az,dy = 0, (m # s ; m, .\ = 1, 2. i, 1331 
.U 

where 

ui, i_. ,(y). (i-l-j-.lsN), 
A=(uj,,). ui,, = o I. (is/--12X), 

z,,,=(Y,, i.,Y,, __.. &J--r Y,)‘. (rn=l. 2. ‘..). (34) 

Equation (33) indicates that the eigenvectors, z,, are 
mutually orthogonal over the interval, (a, b), with 
respect to the matrix, A. Hence, an arbitrary vector, v, 
can be expanded as 

v=(rl(y). tlz(r), . . . . v,(V))’ = 2: “,zW (35) 
m I 

where 
‘h -h 

c, = I z;Avdy, z;Az,dg, (WI= I, 2. .). (36) 
.a I . a 
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In the previous studies, the differential system given 
by equation (6) or (18) has been solved by several 
methods [l-4,7,11,143. These methods, however, are 
not suitable for obtaining the sufficiently higher eigen- 
values with a good accuracy. On the other hand, the 
present method which is equivalent to Galerkin’s 
method is comparatively suitable for the above 
purpose. 

The analysis based on Green’s function becomes a 
failure when the wall temperature (or heat flux) profile 
is a function of axial distance in a section between two 
infinitely long adiabatic (or uniform temperature) wall 
inlet and outlet sections. On the contrary, the analysis 
based on the su~r~sition principle holds for this 
problem though the series expansion coefficients can 
not be calculated term by term. However, the solution 
for the present problem with arbitraryf(x) or h(x) is 
obtained more easily by use of the former than the 
latter. Hence, it is difficult to choose the better of the 
two. 

6. CONCLUDING REMARKS 

(1) The analysis based on Green’s function is very 
simple, but the application is narrow. 

(2) The analysis based on the superposition prin- 
ciple is somewhat complicated, but the application is 
wide. 

(3) Galerkin’s method is comparatively suitable for 
obtaining the sufficiently higher eigenvalues with a 
good accuracy. 

(4) The expansion technique developed by Smith et 
al. more intended for practical use, and can be 

generalized for a generalized Sturm-Liouville system. 

(5) The length of the main heat transfer section, as 
well as the axial conduction term, is a significant factor 
for problems of this sort. 
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APPENDIX I 
The eigenfunctions for the system given by equation (6) or 

(18) can be expanded in the following infinite series of Bessel 
functions which satisfy the boundary conditions in equation 
(6) or (18) [15]: 

X 
Y, = C b1.m J,(~tY)ld,, (m= f L 1k27 . .X (Al) 

i=, 

where 

a,=the ith root ofJ,(a)=O, (Oca,<a,<...), 

di = J,(a,), (i=l, 2, . ..). (Case 1); 

aj = the ith root ofJ,(a)=O, (O=a,<a,<...), 

di = Jo(q), (i = I, 2, . ..). (Case 2). (A2) 

fn this case, the differential system given by equation (6) or 
(18) is reduced to the following infinite set of linear homo- 
geneous simultaneous equations for bj,[15] : 

(i=1,2 ,... ), (A3) 

where 

(i, j = 1, 2, . ..). (A4) 

Hence the following condition for non-vanishing bj~, gives an 
infinite number of positive and negative eigenvalues, and 
equation (A3) gives their corresponding b,,, if one of b,,, is 
replaced arbitrarily by 1 [lS]: 

detj(~-~)6i,j+i,ij=O. (A5) 

In practice, however, the infinite series in equation (Al) must 
be truncated at the Mth term. Hence, this method for 
obtaining the eigenfunctions becomes quite equivalent to 
Galerkin’s method. 

The eigenvalues can be calculated directly from equation 
(A5) by means of some iterative methods, e.g. the regulafalsi 
method [IO] or the Newton-Raphson method, but these 
methods take a comparatively long computational time. 
Hence, it is better to proceed as follows. If equation (A3) is 
rearranged with b,+,, = 1,2, = 4 and b,, = bj, it becomes 
the following equations for i = m and i # M: 

2 
R,,,(L) = 6 - f + I,,, + $ I,,jbj=O, (.w 

&A, 



ti # m; i = 1. 2, . Mt. (A?) 

Equation (A7) is a finite set of linear simultaneous equat~olis 
for b, and can be solved for b, if /, is known. Hence, R,fl:j 
defined by equation (A6) is considered to be a function of i 
alone, and the eigenvalues are given as the roots of R,(l) = 0. 
In the present study, the first 30 positive and negative 
eigenvalues for M = 60 were determined by means of the 
Newton-Raphson method. In this case, the approximate 
eigenvalues which are determined by means of the WKH 
method were used as the initial estimates of i., and the mth 
positive and negative eigenvalues were usually determined 
from R,(Z) = 0. However, the ntth positive or negative 
eigenvalue was rarely determine from R,, ,(i) = 0 when the 
following conditions are not satisfied: 

j.l”l - ;.’ ’ f R,(i’“i 
_--___ <I and _-._._ <I, 
j,“l - ;,m R (j”“) 

(AX! 
0, ’ 

where i!” is the ith estimate of i.,. This is due to the fact that 
the root of R,(L) = 0 which is determined by means of the 
above method converges not the mth eigenvalue but the sth 
one in such a case. 

APPE?iDIX If 

The solutions for the system given by equation (8) or (19) 
are now sought of the form 

,i,2,+1 , i-1 z,-J,id 

(1 -= 0. 1, . ..t. (AY) 

where [il?] is Gauss’ notation and 

o”.1 1 = h,, : , = i kilo) 

Substitutron of this into equ;ttlon (81 t>r (IY) gives the 
following recurrence equations for u;, j h or h, I.i. 

ti = I, 2. ,j-- . 1.1. . t + ii. (Al 1 t 

where ai, I,& or bj. j,k which appear m equatjon (AI 1) but do 
not appear in equation (A9) are zero. Hence, the solutions 
given by equation (A9) are determined on the basis of 
equations (AlO) and (All). 

TRANSFERT TH~RMIQ~E STATIONNAIRE AVEC CONDUCTION 
AXIALE DANS UN ECOULEMENT LAM~NAIRE DANS UN TUBE 
~~R~U~AIRE AVEC UNE PAR01 A TEMPERATURE OU A FLUX 

THERMIQUE DONNE 

R&urn&--La solution du profil de temp&ature est obtenue par le principe de superposition ou par utilisation 
de la fonction de Green quand le profil de temp&ature de paroi (ou de flux thermique) est une fonction de la 
distance axiale de la section deux zones infiniment longues avec une paroi 2 temlperature uniforme (ou 
adiabatique). La solution sat&fait numkriquement les conditions imposkes SLIT la temperature et sur la 
d&iv&e axiaIe aux extrtmitts de la zone principale de transfert thermique. De plus, ii est sugg&C que Ia 
m&hode de dkveloppement utilide ici peut-&re &endue facilement au sy&me g&niraiii de 

Sturm-Liouville. 

STATIONiiRER WZ%RMEDURCHGANG MIT AXIALER WARMELEITUNG BEI LAMINARER 
STRC)MUNG IN EINEM KREISROHR MIT VORGEGEBENER TEMPERATUR ODER 

WFiRMESTROMDlCHTE DER WAND 

Zusammenfassung - Die Berechnung des Temperaturprofils wird nach dem Superpositionsprinzip oder mit 
Hilfe der Green’schen Funktion durchgefiihrt, wohei das Wandtemperaturprofil (oder die WIrmestrom- 
dichte) eine Funktion der axialen Koordinate zwischen zwei unendlich langen Eii- und Auslaufabschnitten mit 
gleichf6rmiger Temperatur der Wand (oder mit adiabater Wand) ist. Es wird festgesteltt, da8 die L&sung 
~hlenrn~~ig sehr gut die An~hiu~~dingungen erfiillt, die fiir die Tem~ratur und ihre Ab~eitung in axialer 
Richtung an beiden Enden der ~auptw~rme~~rgang~one vorgegebenen sind. ZusMich wird gezeigt, da8 
die hier angewandte Reihenentwicklung leicht fiir die Anwendung auf ein generelles Sturm- Liouville-System 

verallgemeinert werden kann. 

CTAUHOHAPHbIfi IIEPEHOC TEIIJIA I’IPM AKCMAflbHOfi TEnJlOflPOBOfiHOCTM 
M JIAMMHAPHOM TE‘IEHWH B KPYl-JlOti TPYGE C 3AAAHHOn TEMIIEPATYPOW 

MJIM nJlOTHOCTbK, TEIlJtOBOI-0 llOTOKA HA CTEHKE 

A~~rau~ - C noMombw flpviiwiina cynepno3~u~~ WIN ~ynxu~~ rpmia nonyYeHo pemenue +QJIH 
reMnepaTypnor0 npo~uns B cnysae, xorila ~~n~~eneH~e ~e~nepa~yp~~ cfei3xH (wra Tenaosoro 
ilOTOlG3) SiBnleTCcII +yHxllkieti paCCTO%IH~n ii0 OCSi B o6nacTM MeXRy AByMa kCKOHeW0 ynaneHH~M~ 

BXO~~H~XM ii BbfxoaHbrM ceqeuwwiR, i5axonamHhi5ic~ npW 0neoponHofi fats anHa6aTlrqecrcoii) rehmepa- 
Type CTeHKW. YUClcneHHO yCTaHOBJIeH0. 4To peu3eHiie ynoeneTsopaeT ycno~s~l~ conpamemia, Hanara- 
eMbrM na TebmepaTypy a ee aKceanbHyi0 npoe3~onHym c nsyx CT~P~H OCHOBHO~O yqacTxa Tenno- 

06MeHa. KpoMe TOGO, BblCKa3aHO npenno.noXeeee, wo HcIIOnb3yeMbI% MeToa MOXHO Jlerxo o6o6meTb 
Ha wcrebry WTypMa- Jluyskinnn. 


