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STEADY-STATE HEAT TRANSFER WITH AXIAL
CONDUCTION IN LAMINAR FLOW IN A CIRCULAR
TUBE WITH A SPECIFIED TEMPERATURE
OR HEAT FLUX WALL
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Abstract—The solution for the temperature profile is obtained on the basis of the superposition principle or
by the use of Green’s function when the wall temperature (or heat flux) profile is a function of axial distance in
a section between two infinitely long uniform temperature (or adiabatic) wall inlet and outlet sections. It is
confirmed that the solution satisfies numerically the matching conditions which are imposed on the
temperature and its axial derivative at each end of the main heat transfer section, In addition, it is suggested
that the expansion theory employed here can be generalized easily for a generalized Sturm-Liouville system.
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NOMENCLATURE

matrix defined by equation (34);
coefficient defined by equation (13);
lower limit of y;

coefficient in equation (A9);

series expansion coefficient in equation
(5) or (17);

= a,, exp (—A.L);

coefficient defined by equation (16) or
21);

upper limit of y;

coefficient in equation (A9);

i m (=Db,), series expansion coefficient in equation

(A1);

series expansion coefficient in equation
(5) or (17);

= b, exp(—1,L);

coefficient defined by equation (29);
series expansion coefficient in equation
(10) or (35);

coefficient defined by equation (A2);
function of y defined by equation (28);
arbitrary function of x;

solution of recurrence differential equa-
tion (8);

Green’s function ;

function of y defined by equation (28);
constants in equation (31);

arbitrary function of x;

solution of recurrence differential equa-
tion (19);

coefficient defined by equation (A4);

Jolo,y), J,(2;y), Bessel functions;;

=l/ry Pe, dimensionless length of main
heat transfer section;

length of main heat transfer section ;
=2r U, /oy, Peclet number;

function of y;

function of / defined by equation (A6);

r, radial distance;

oy tube radius;

T, dimensionless temperature ;

T s dimensionless cup-mixing temperature ;

uly), function of y;

Uy, mean axial velocity;

v, arbitrary vector;

v,(y), arbitrary function of y;

x, =z/r,Pe, dimensionless axial distance;
Y, eigenfunction;

¥, =r/r,, dimensionless radial distance;
zZ,, vector defined by equation (34);

z, axial distance.

Greek symbols

Qg thermal diffusivity;

o, root defined by equation (A2);
i pr Kronecker's delta;

8(x), Dirac’s delta function ;
An(=2), eigenvalue.

1. INTRODUCTION

THE PROBLEM of steady-state heat transfer with axial
conduction in laminar flow in a circular tube has been
solved analytically [1-4] or numerically [5-7] when
the wall temperature profile is a step function [1, 2, 5,
6], when the wall heat flux profile is a step function [3,
5,6], or when the wall temperature profile is uniformin
an infinitely long outlet section with an infinitely long
adiabatic wall inlet section [4, 6, 7]. These wall
conditions are reasonable physically. In most indus-
trial heat transfer problems, however, the wall temp-
erature or heat flux profile is a function of axial
distance, and the length of the main heat transfer
section is finite. Because of this point of view, the
present study aims at obtaining an exact solution to
the problem of steady-state heat transfer with axial
conduction in laminar flow in a circular tube with a
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specified temperature (or heat flux) wall in a section
between two infinitely long uniform temperature (or
adiabatic) wall inlet and outlet sections.

An exact solution for the temperature profile is
obtained on the basis of the superposition principle
when the wall temperature or heat flux profile in the
main heat transfer section can be expanded in a power
series of axial distance. On the other hand, a similar
problem for slug flow in a coaxial annulus has been
solved by use of Green's function [8], and this
approach is available for solving problems of this sort
whether the velocity profile is uniform or not. Hence,
another solution is obtained by use of Green’s function
which is derived from the solution with a uniform
temperature or heat flux wall condition in the main
heat transfer section. It is, of course, confirmed that
both solutions are identical when the wall temperature
or heat flux profile in the main heat transfer section can
be expanded in a power series of axial distance. It is, in
addition, confirmed that the solution satisfies numeri-
cally the matching conditions which are imposed on
the temperature and its axial derivative at each end of
the main heat transfer section.

2. BASIC EQUATIONS

The governing heat transfer equation is, in dimen-
sionless form, given as follows, e.g. [3]:

(1 ,z)("l‘_ | ("27'+ 1 ¢ ( ‘f‘T‘
YA T Pt ox yov Y ay )
f— <X < T
( Jom
O<y<l
with
,'«‘T \
( ) =0. (2)
€y /v o

When the wall temperature profile is a function of axial
distance in a section between two infinitely long
uniform temperature wall inlet and outlet sections, the
boundary conditions are given as

T B jO, (x<0, x> L),
(1), = f(x), (0<x<L)
(My-y, =0 (0=y=1),  (Casel). (3)

When the wall heat flux profile is a function of axial
distance in a section between two infinitely long
adiabatic wall inlet and outlet sections, the boundary
conditions are given as

(OT _{0, (0<x<L)

dy >}_,, T lhtx), (0 <x<L),

(T)--, =0, (0=sy=sl),
M

(T)y-1., =4 J h(x)dx, (0L y=1),(Case 2). (4)
0

Hence, equation (1) with equation (2) is to be solved
with equation (3) or (4).
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3. THEORETICAL ANALYSIS
3.1. A solution based on the superposition principle
The solutions for f(x) = x" (n=0. 1. .. ) are now
sought in the form

(']")‘ 0= Z a, Cxp( - )‘!ll\ ? Ym( .v)‘
T B topn! i
(Thy 1 = “ ;1), AARY
- Z bm e"(p< - ':‘m X )Ym(y)*
m
(T = 3 a,expl—2,%)Y, (1) i5)
m -1

Here, 4, and Y, (y), respectively, are the eigenvalues
and eigenfunctions of the following boundary value
problem:

ld(-dy"‘\) a2y =0
vdy - dy ~"'(Pe2 v =0
qy
(S8) =0 (), =0 m=x1 42 )
dv /, 4 (6)
where
foom<0, 2,>0, (m=1,2...) (7

In addition, f(y) are the solutions of the following
recurrence differential equations:

df,

1d 1
e = (1 — Y - —f
yd,\'(.}dy ) A
‘df; .
heds =0, (f),..=0, (i=1.2, ) 8)
(dy,,), 0 Uy i } .
where
Sy =0, joly=1 9)

[t is evident that the solutions assumed by equation
(5) satisfy equations (1), (2), and (3) for f(x) = x"(n =
0,1,...). Hence, the complete solutions are determined
on the basis of the matching conditions which are
imposed on the temperature and its axial derivative at
x = 0and x = L. In thiscase, the expansion technique
commonly used for the Sturm-Liouville system can-
not be utilized because the present eigenfunctions lack
the classical orthogonality properties. However, the
following technique presented by Smith et al. [9] is
available.

The differential system given by equation (6) has an
infinite number of not only positive but also negative
eigenvalues. Hence, not one but two arbitrary func-
tions of y, v,{y) and v,(y), which are quite irrelevant
to each other can be expanded as

T

b= T en¥ ol
m= i
0) = Y dmen¥ulyh O<y<l)  (10)
m=t1
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In addition, the present eigenfunctions have the fol-
lowing properties which can be derived easily from
equation (6):

‘<}.m+}.s
o\ Pe?
(m#s; (11)

This allows for a term-by-term calculation of the series
expansion coefficients in equation (10) as follows [9]:

/i
N

x yY,dy/A,, (m=+1, £2,..),

+ l—yz)yY,..sty=0,

ms=+1, +2,..)

(12)

where

172
Am:[ <Pz+l—y)yY§,dy, m=zxl1 +2,..).
(13)

In the present case, the following further relations are
derived from equations (6), (8), and (9) with the aid of
integration of parts:

! 2
f [<F+ 1-y9fi — = i‘l\'medy
_ (de/dy)y:l I
= (=010 (9

Hence, the series expansion coefficients in equation
(5) are determined finally as

- n! B_ Ln—i
= — "6, —
a_ ., i:ZO (n_l)' (—)”m)l+l[ n.i

b Z nt  B_ L
T A =) (=AY

exp(4_,,L)],

b {_Bn
_— n.(_/1 TEaN
" n! B L'
an= ,(—)—m[l 3, exp(—2,L)],
¢=0
(m=1,2,...). (15)
where §, ; is Kronecker’s delta, and
a} = a, exp(—4i,L), b*,=b_, exp(—2_,L),
Bim= (@Y p/dy)y_1/A.m (m=1,2,..) (16)

In the same way as described above, the solutions for
h(x) = x"(n = 0,1,...)are obtained as shown in Table
1, equations (17)—(21).

As mentioned above, the solutions for f (x) or h(x) =
x" (n=20, 1, ...) are obtained on the basis of the
superposition principle. Hence, a solution for arbitrary
f{x)or h(x)is obtained by superposing these solutions
again when f(x) or h(x) can be expanded in a power
series of x.
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3.2. Another solution based on Green’s function
Green’s function, G(x, y), defined as the solution for
f(x) or h(x) = (x) where d(x) is the Dirac delta

ion, and is derived from the following formula

G(x,y) = hm T(x,y) for f(x) or h(x) = (22)

E.
Case 2 is

Hence, Green'’s function for Case 1 or

obtained as

Z B—mexp(_)"—mx) YAm(y)a

G(x<0, y) =
m=1
G(X>0, Y) = - z Bmexp(_;“mx)Ym‘y)’ (Case l)’
m=1
G(x<0,y)= — Y B_,exp(—/_,X)Y_,(y)
m=1
G(x>0,y) =4+ } B,exp(—/,x)Y,(y),

m=1

(Case 2). (23)

Further, it is evident that the following formula
provides a solution for arbitrary f{x) or h(x) [8]:

T(x, y) = f[/(ﬁ) or h({)]G(x—¢, y)d¢. (24)
(4]

Hence, another solution for arbitrary f(x) or A(x) is
obtained as shown in Table 2, equations (25) and (26).

3.3. Comparison of both solutions

The matching conditions which are imposed on the
temperature and its axial derivative at x=0 and x=L
provide the following formulac (note that the
formula for fy(y) is not valid at y = 1):

F_(y) =fioi(0)—F.(y),  (Casel),
H_(y)= —4h(y)—H (), (Case?2),
Ogy=<t; i=0,1,..), 27)
where
Fo) or Hoiy) = § 2= =Y )
(i=0,1,..). (28)

On this basis, it is easily confirmed that both solutions
mentioned above are identical when f(x) or h(x) = x"
(n =0, 1,...). Hence, it is evident that both solutions
for arbitrary f (x) or h(x) also are identical when f (x) or
h(x) can be expanded in a power series of x.

4. CALCULATED RESULTS

The differential system given by equation (6) or (18)
can be solved by means of Galerkin’s method (e.g.
[10]) (see Appendix I), and the first 30 positive and
negative eigenvalues and their corresponding eigen-
functions were calculated for Pe = 1-100 and oo
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Table 1. The solutions for h(x) = x" (n = (), 1,..)

The complete solutions:

4
Y ATy = ——

i+ 1

(Nyey= Z a_expl—A_,x)

n+t i

(T}Q<X<L: (ﬁ-—!-'}-i)' X" H\xh(i

The differential system for Y (y) (4,, > O for m > 0, and 7,

Z {b* Lexp[—A_{x—L)]Y
me1

LM Y akexpl — 2,(x—~L)] Y (»)

m 1

W3} + b exp(— 2, Y, (o))

< 0 for m «< 0):

td ( ay,\ . [ A, \ vy, dy,
- el B Amd T +1- §,2 Ym = 0? — = {}, 0 = £ 2 ¥}
yar\Vay ) ez 7) {d,\: ) . ‘ G ) =0 =2 e
The differential system for h{y)[h.,(y) = 0, and ho(y) = 1]:
1d/ dh 1 (dh, " fdh; g
= {1~ 2};, - e By = = it = { =12 {
\d} (} d}) =y Pl te2 (‘dy )\- " { dy }v 1 {i . {19}
The series expansion coefficients in equation (17);
"ooal B_ L =
e T Wl B
Z o (n—1{—/_ )‘”[ ni = XL .Zo
"opl B L . m \ (
; Tl )}H [1~8, exp(~4,L)) b, = —-n!(—:fm—)m, m=12..) (20}
where
1 /2”
B, = (Y"‘)":‘_. j {}i; +1-y? )va,,dy, m= +1, +2,...} 24y

(note that no negative eigenvalue exists for Pe = 1)
Some sample values of them are shown in Table 3
where C ., represent the following coefficients which
are required to calculate the cup-mixing quantities:

~ 1
Cm=4J (1=y?)yY ., dy, (m=1,2,..)(29)
4]

The differential system given by equation (8) or (19)
can easily be solved in order (see Appendix II}), and the
first 20 solutions were determined. The first three of
them are shown in Table 4, equation {30).

To check the validity of equation (27), F . . (y) or

H,,(y) were calculated by employing the first 30
positive and negative eigenvalues and their corres-
ponding eigenfunctions. In this case, it is clear from
Table 3 that the direct sums for F, o(0) [or H ,4(0)]
diverge (or converge slowly). In such a case, these sums
were calculated with the aid of Euler’s transformation.
As Table 5 shows, the calculated results support the
validity of equation (27), namely, the fact that the
present solutions satisfy the required matching
conditions.
Some sample axial temperature profiles for f(x) =

and Pe ' L = 1 are shown in Fig. 1 (Pe = 1)and Fig. 2

Table 2. A solution for arbltrary j( x) or ia{\) based on Green’s function

A solution for Case 1;

~L

(Mo = Z B-,,,Y_,,,m; F&expl — A (x—1dEA(T), .,
)3

m=1

.
(Towxer = {B..mv:mm f(&exp[— ..

A solution for Case 2:

s Al
(Theo=— 3 Bﬂ,,,Y-mcM h(Eyexpl — i px = E)E, (T, .
m=1 O

L

(Mo <x<L = 4[ h(¢)dé — Z {B.-,..Y-m(y)j
0 X

m=1

h(&)expl = A p(x — E]dE~ B, Y (¥} J HEexpl — ip(x —&)]dE].
[}

~L

Y B,Y.(¥) t F(Eexpl — A (x —E)dE,

m’l o

25)

GO

AL ; v
,,:4‘ HEWE + 5 Ba¥(y) | hiElexpl - £plx—211de,
Ry m=1 Ry

(26)
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Table 3, Some sample eigenvalues and their corresponding eigenfunctions
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m A B_C B_v_(0) Ay BC B ¥ (0)
(Pe=1, Case 1)
1 -2.825206819 1.198396306  1.946490838 2.044367805 -1.080304870  -1.865019072
2 -5.876321504 0.047962400 -3.011985658 5.187344037 -0.131583256 2.858906794
3 -8.999200814  0.017204568  3.748840450 8.323450740 -0.032769752 -3.614852901
4 ~12.132022190 0.007519921 -4,358440664 11.461365119 -0.012256897 4,241474748
5 -15.270218160  0.003916943  4.893581545 14.600502245 -0.005795557 —4.787500681
6 -18.409114200 0.002290366 -5.374589837 17.740366285 -0.003174201 5.277582209
7 -21.548860083 0.001482416 5.815813919 20.880683005 -0.001820601 -5.725953836
8 ~24.689110037 0.000977893 -6.2257767%H4 24.021297527 -0.001248214 6.141720029
9 -27.820683042 0.000689404  6.610324012 27.162117437 -0.000856159 -6.531002412
10 ~30.970475310  0.000504059 -6,973674810 30.303084627 ~0.000612403 6.898533225
(pPe=1, Case 2)
1 -0.497420128 -4.02025736  -3.95802775 3.51896151 -0.127884432 -0.670288838
2 -4 ,18747650 0.15421007 0.61364041 6.69220402 ~0.024810121 0.485425699
3 -7.35923114 0.02086588  -0.46289008 9.84684830 -0.008180993 -0.399825689
4 ~10.51363651 0.00698184 0.38693342 12.,00542546  -0.003607344 0.347892213
5 ~13.66216276 0.00315783  -0.33920440 16.1413733 -0.001891948  -0.312087755
6 ~-16.8080863 0.00169077 0.30583401 19.2859383 ~-0,0011116898 0.285478154
7 ~-19.9526377 0.00100230  -0.28066730 22.4296877 -0.000707524  -0.264696388
8 -23.0963788 0.00065022 0.26084759 25.5729164 ~0.000477699 0.247883206
9 -26.2396019 0.00044323 -0.24471354 28.7157924 -0.000337525 ~0.233916677
10 ~29.3824740 0.00031558 0.23124746 31.8584185 -0.000247233 0.222074219
{(Pe =10, Case 1)
1 ~74.767174 15.023882 8.0693495 6.744048933 ~5.191258484  -9,306439446
2 -103.90065 ~7.298478 ~-24.192085 30.767918207 -2.100393724  20.922006501
3 ~128.93675 1.311657 39,133948 59,503463202 -0.873505642 -29.341380841
4 -157.58366 -0.091190 ~-46,743543 89,476677963 -0.378694205 36.376232247
5 -187.52746 0.000414 52.326352 119.97261248  -0.177008213 -42.475034043
6 -218.01950 0.001032 -57.12745 150.75037263  -0.090425105  47.88330553
7 ~248.80081 0.001024 61.45626 181.69864606 -0.050200462 -52.77092908
8 -279,75301 0.002021 -65,45043 212.75772822  -0.030130571  57.2552073
el ~310.81740 0.001864 69.18707 243.89269650 -0.019199782 -61.4180604
10 -341.9560 0.001640 -72.71542 275.08181599 -0.012873054 65.3181990
{(Pe =10, Case 2)
1 ~37.16544 ~4, 384436 -1.246671 18.78794265 -0.332491227 -5.913241447
2 -90.5368 1.368829 1.663630 45,43800310 -0.217767961 5.074856877
3 -115.1829 ~0.296891 -2.817626 74.52727490  -0.106259913 —4,208709120
4 ~142.4600 0.052200 3.043088 104.64084529 -0.052264679 3.735785680
5 -172.0226 0.014117 ~2.887614 135.23611865 ~0.027743463  -3.320760878
8 ~202.3683 0.009437 2.708599 166.08835661  -0.015983339 3.02584923
7 -233.0831 0.006223 ~2.546517 197.09201050 -0.009890858 -2,78942128
8 ~264.0034 0.004304 2.405368 228.1951571 -0.006492240 2.59048762
9 -205.0502 0.003092 ~2.282953 2593638590 ~-0.004470487  -2.442906879
10 -326.1805 0.002292 2.176228 290.5798502 -0.003200899 2.3111043

{Pe = 10);thosefor h(x) = Peand Pe - L = 1,in Fig. 3
(Pe = 1 and 10}); and some sample cup-mixing tem-
perature profiles, in Fig. 4 [ f(x) = 1] and Fig. 5 [A(x)
= Pe]. In either case, it can be observed that the fluid
in the entrance section (x <0) is preheated more easily
for smaller Peclet number flow, and the fluid tempera-
ture in the exit section (x> L) approaches its terminal
temperature more slowly for larger Peclet number
flow.

5. DISCUSSION
The present results for f(x)or h{x) = land L = =

or for h(x) = &(x) were compared with the tabulated
results of Jones [ 1, 2, 11] and with the graphical results
of Hsu [3], Hennecke [5], and Verhoff and Fisher [6].
In this case, it was confirmed that the present re-
spective results are in good agreement with the cup-
mixing temperature profiles for f(x) = 1 in [1,2,5,6],
for h(x) = 1in [5], and for h(x) = 8(x) in [11], with the
radial temperature profiles at x = Oforf{x) = lin 5]
and for h(x) = &(x) in [11], and with the Nusselt
number profilesforf(x) = and Pe - x > 0.1in[1,2,5,
6] and for h(x) = 1in [3, 5]. It was observed, however,
that the present Nusselt numbers for f(x) = 1 and
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Table 4. The first three solutions of equation (8) or (19).
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1228800 36864 147456° " 9216 147456 921600 147456
1 /41 7 3 5
e L gy s
Pe2(576 & et T )
7 1 ! 2
hiy IR S N S
n = G T e T e
9 7 3 1 1o 1 4
ey S e O A e i e [ ISR Rt I e
) =550 T ama” T st 5760 T 10w T ope ( 4’ TRy ) T Pt
45659 9 . 167 59 133 89 1
hy(y) = = o oy oy T T Bl 2
309657600  10240°  122880°  55296°  294912° 921600 147456
1 /9 5 1 /1t 18
e e O oy -y +——<—+f - v“)+—— 30
Peri1280 384 TV Tset T snn? ) P\ T2 T4 T e O9
Table 5. Confirmation of the validity of equation (27)
Cup-mixing
i Pe value v=0 y=025 y=05 y=0.75
0 1 ~92x107° 53x107* 27x107%  —76x107° 9.3x 107"
10 —13x107¢ 29%107°  ~14x107'  —23x1077 6.5% 107
() — Foly )
/ ’UF) -%m -1 1 9.1x10"° 391071 —16x107*  —-37x10°° 30x107%
-t 10 29x107%  —11x107%  —12x10"%  —22x107" 9.6x10°5
5 1 —63x107° 12%x107'°  -38x10°° L1x107" 1L6x107°
- 10 —47x107" 41x107%  ~15x107Y  —19%10° 12x107°
0 1 54x 10" 93x107° 18x107%  —16%x10"7  —14x107"
10 6.5%10°° 37x107 11x1073 59%107° 15%107%
_4hz y) — H ., i(y) - a .
%L;— L 1 ~26%x10° —15x10710  ~22x107¢  —27x10" —91x107"
- 10 —20x10°%  -72x107° 18x1075  ~53x10"%  —50x10"°
) i 19%1071 —11x1071"  —60x107°  —25x10 ! 6.7 %107

79x107*

Pe - x < 0.1 are lower than those obtained by Hen-
necke [5] and higher than those obtained by Jones [2],
and that the present radial temperature profiles at x =0
for h(x) =1 are higher than those obtained by
Hennecke [5].

The form of Hsu’s solution [3] is identical with that
of the present one for i(x) = 1l and L = , and he
determined the series expansion coefficients with the
aid of a Gram—-Schmidt orthonormalization pro-
cedure. This technique, however, is unnecessarily
complicated in comparison with the present one which
allows for a term by term calculation of the series

6.8 %1078

36x107° —64x107°

expansion coefficients. On the other hand, Jones
analyzed the problem for h(x) = land L = + [1,2]or
h(x) = &x) [11] by employing a two-sided Laplace
transform. Although he obtained only the asymptotic
solution at low [2, 11] or high [1] Peclet number, it is
confirmed that his solution is equivalent to the present
one.

The most significant part of the present analysis isin
the expansion theory given by equations (10)-(13).
Agrawal [12] seems to be the first to employ the
expansion technique given by equation (12) though he
did not describe explicitly. After that, Deavours [13]
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y=1

~05

Pe-x

FiG. 1. Some sample axial temperature profiles for f(x) = 1 and Pe-L = 1 (Pe = 1).

~0.5

.o

-05 0

1
Pe-x

Fii. 2. Some sample axial temperature profiles for f(x) = 1 and Pe 'L = 1 (Pe = 10).

2

FiG. 3. Some sample axial temperature profiles for h(x) = Pe and Pe-L = | (Pe = 1 and 10).
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Pe-x

Fii. 4. Some sample cup-mixing temperature profiles [ f(x) = 1].

25

Fi. 5. Some sample cup-mixing temperature profiles [h(x} = Pe].

developed an expansion theory which is essentially
equivalent to that developed by Smith er al. {9].
However, the latter is more intended for practical use.
Hence, the latter was employed here. Further, this
theory can be generalized easily as follows.

The differential system given by equation {6) or {18)
is generalized as

d

{()dy"' + i} Y, =0, {a<y<h)

—— J}——— TR =0, 1< ¥ .

a 1P g, 2 Am ) Yo, a<y

' dy, dy,

(Y",“‘Fhu'a"i,)y u‘-—O, (Ym'{‘h,,'*d'};')‘mbw—o
(m=1.2,..) (31)

In this case, it can be confirmed easily that the
eigenfunctions have the following properties:

U s i ey
5 (5o

i

Y, Y dy=0,

(m#s;m, s=1,2, ... (32}

or
p
i zhAZdy =0, (msts;m s=1,2,..0, (33)
where
g ¥ U+j—1EN),
A:’. L) d = )
(@, )\oa; %0. 4/ 1N},

2o =Y G Yo oo i VY im=12..0 (34)

Equation (33) indicates that the eigenvectors, z,,, are
mutually orthogonal over the interval, (a, b), with

respect to the matrix, A. Hence, an arbitrary vector, v,
can be expanded as

V‘—‘;(l"l(_\’), [72(}'}, v\v(y})’ = Z C s (35)
ol

where
o b

2} Avdy/ ‘ ziAz,dy, (m=1,2....(36)

vl RER

Cm =




Steady-state heat transfer with axial conduction in laminar flow

In the previous studies, the differential system given
by equation (6) or (18) has been solved by several
methods [1»~4, 7, 11, 14]. These methods, however, are
not suitable for obtaining the sufficiently higher eigen-
values with a good accuracy. On the other hand, the
present method which is equivalent to Galerkin's
method is comparatively suitable for the above
purpose.

The analysis based on Green’s function becomes a
failure when the wall temperature (or heat flux) profile
is a function of axial distance in a section between two
infinitely long adiabatic (or uniform temperature) wall
inlet and outlet sections. On the contrary, the analysis
based on the superposition principle holds for this
problem though the series expansion coefficients can
not be calculated term by term. However, the solution
for the present problem with arbitrary f(x) or A(x) is
obtained more easily by use of the former than the
latter. Hence, it is difficult to choose the better of the
two.

6. CONCLUDING REMARKS

(1) The analysis based on Green’s function is very
simple, but the application is narrow.

(2) The analysis based on the superposition prin-
ciple is somewhat complicated, but the application is
wide.

(3) Galerkin’s method is comparatively suitable for
obtaining the sufficiently higher eigenvalues with a
good accuracy.

{4} The expansion technique developed by Smith et
al. more intended for practical use, and can be
generalized for a generalized Sturm-Liouville system.

(5) The length of the main heat transfer section, as
well as the axial conduction term, is a significant factor
for problems of this sort.
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APPENDIX I

The eigenfunctions for the system given by equation (6) or
(18) can be expanded in the following infinite series of Besse!
functions which satisfy the boundary conditions in equation
(6) or (18) [157:

[ =

Yn=

b mlolay)d, (m=x1, £2,..), (Al
1

where

a;==the ith root of Jo(2)=0, (O<a, <a,<...),

d; = Jy{a), (i=12,..), {Case 1);

a; = the ith root of J,(0)=0, 0=0a,<a,<...),

di=Jola), (=12,..) {Case 2). (A2)

In this case, the differential system given by equation (6) or
(18) is reduced to the following infinite set of linear homo-
geneous simultaneous equations for b; ,[15]:

i(;"“ N +1 b, =0 (i=1,2 A3
et Pez )-m (] Lj ¥ jm™ =1, s~")9 ( )
where
2 i
Lj=~=1 (=) yJolay)olay)dy,
dd, |,
Gj=12.) (A%

Hence the following condition for non-vanishing b, ,, gives an
infinite number of positive and negative eigenvalues, and
equation (A3) gives their corresponding b, , if one of b . is
replaced arbitrarily by 1 [15]:

2 al
(—” ~ =&+ 1
Per 1, ’

In practice, however, the infinite series in equation (A1) must
be truncated at the Mth term. Hence, this method for
obtaining the eigenfunctions becomes quite equivalent to
Galerkin’s method.

The eigenvalues can be calculated directly from equation
(AS) by means of some iterative methods, e.g. the regulafalsi
method [10] or the Newton-Raphson method, but these
methods take a comparatively long computational time.
Hence, it is better to proceed as follows. If equation (A3) is
rearranged with b, ,, = 1, 4,, = 4, and b; , = b, it becomes
the following equations for i = mand i # m:

det =0 (AS)

2

p M
St Ly + ¥ 1,,;b;=0,

n (A6)

A
R (A)=——
m( ) Pez ot
G#m)



MOTs 2 .
¥ [(“‘“‘ - %L‘)ay.j + 1 'hj+11,m = 0,

{i£m; i=1 2, ..My (AT)

Equation (A7)} is a finite set of linear simultaneous equations
for &; and can be solved for &, if 4 is known. Hence, R {1}
defined by equation (A6} is considered to be a function of 2
alone, and the eigenvalues are given as the roots of R (/) = 0.
In the present study, the first 30 positive and negative
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Crb ] gt 2im2i4d L
hi(y) = ;Xx (F;E ) kZl b ¥ A
(=01, (A9
where [i/2] is Gauss’ notation and
Aoy =by (=1 (AL}

Substitution of this into equation (8} or (19} gives the
following recurrence equations for a, , , or b;

eigenvalues for M = 60 were determined by means of the . (4 o —a - W2k - 2
Newton-Raphson method. In this case, the approximate ~* 7R Ttk BT B RER AT
eigenvalues which are determined by means of the WKB k=23 ..., 2—3j+4)

method were used as the initial estimates of 4, and the mth
positive and negative eigenvalues were usually determined
from R, (%) = 0. However, the mth positive or negative P
eigenvalue was rarely determined from R, () = Owhen the

following conditions are not satisfied:
3(2) s HeS
A= R, 2"
fL T ot and o) oy

301y (0 0] !
A R, (A

AR 3 PR | 2] S E Y
17 b: 2.0 1 k- 1’,’(2‘1\"“2}2,

(A8) (k= 2.3 243,
where A" is the ith estimate of 4,.. This is due to the fact that [ _
the root of R,(4) = 0 which is determined by means of the P
above method converges not the mth eigenvalue but the sth

one in such a case. (All}
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where a; ;, or b; ;, which appear in equation (A1) but do
not appear in equation (A9} are zero. Hence, the solutions
given by equation {A9) are determined on the basis of
equations (A10) and (All).

APPENDIX 1

The solutions for the system given by equation (8) or {19)
are now sought of the form

lii2)+1 L-1 2im3j44
262
fn = Z (-*'*2) Z ;e Y s
j=1 ‘Pe kot

TRANSFERT THERMIQUE STATIONNAIRE AVEC CONDUCTION
AXIALE DANS UN ECOULEMENT LAMINAIRE DANS UN TUBE
CIRCULAIRE AVEC UNE PARO!I A TEMPERATURE OU A FLUX

THERMIQUE DONNE

Résumé—La solution du profil de température est obtenue par le principe de superposition ou par utilisation

de la fonction de Green quand le profil de température de paroi (ou de flux thermique) est une fonction de la

distance axiale de la section deux zones infiniment longues avec une paroi 4 température uniforme {ou

adiabatique). La solution satisfait numériquement les conditions imposées sur la température et sur la

dérivée axiale aux extrémités de la zone principale de transfert thermique. De plus, il est suggéré que la

méthode de développement utilisée ici peut-btre étendue facilement au systéme généralisé de
Sturm-Liouville.

STATIONARER WARMEDURCHGANG MIT AXIALER WARMELEITUNG BEI LAMINARER
STROMUNG IN EINEM KREISROHR MIT VORGEGEBENER TEMPERATUR ODER
WARMESTROMDICHTE DER WAND

Zusammenfassung — Die Berechnung des Temperaturprofils wird nach dem Superpositionsprinzip oder mit
Hilfe der Green’schen Funktion durchgefiihrt, wobei das Wandtemperaturprofil {(oder die Wérmestrom-
dichte) eine Funktion der axialen Koordinate zwischen zwei unendlich langen Ein- und Austaufabschnitten mit
gleichformiger Temperatur der Wand {(oder mit adiabater Wand) ist. Es wird festgestellt, daB die Losung
zahlenmiBig sehr gut die Anschlufibedingungen erfiillt, die fiir die Temperatur und ihre Ableitung in axialer
Richtung an beiden Enden der Hauptwirmeiibergangszone vorgegebenen sind. Zusatzlich wird gezeigt, daf
die hier angewandte Reihenentwickiung leicht fiir die Anwendung auf ein generelies Sturm- Liouville-System
verallgemeinert werden kann.

CTAUMOHAPHBIP TIEPEHOC TEIUIA TTPU AKCHANIBHOH TEIJIONPOBOAHOCTH
A JAMHHAPHOM TEUEHHMM B KPYIJION TPYBE C 3AJJAHHOWM TEMNEPATYPOU
WU TUTOTHOCTBIO TEMJIOBOTIO INOTOKA HA CTEHKE

Aunoranus — C NOMOUILIO NpHHLUMAA cyneprnozuuuu wid Qynxumit [puna nosyyeHo pelucHne Ju
TeMIEPATYPHOTO NPORUIA B CHy4ae, KOLIA PacHpeiC/iCHHE TEMNEPATyphl CTCHKH (WK TEIJIOBOTO
HoTOKa) sBiseTCs QyHKUMEH PaccTosHHA nO ocH B obnacTH Mexny AByMs GECKOHEMHO YAANEHHBIMA
BXOJHBIM H BbIXOAHBIM CCHEHHAMM, HAXONAUMMMCS NPH OHOPOAHOH (Win anwabaTudieckoil) TeMnepa-
Type CTeHKH. YHMCIEHHO YCTAHOBJIEHO, YTO PEIICHHE YAOBJICTBOPAET YCHOBHAM CONPSXEHHUA, Hanara-
eMBIM HA TEMIEPATypy M ee AKCHAJILHYIO NPOW3BOAHYIO ¢ OBYX CTOPOH OCHOBHOIO Y4acTKa Terjio-
obMmena. KpoMe Toro, BHICKA3AHO TIPEANOIOKEHHE, YTO HCNONbB3YEMbI METOL MOKHO NETKO 06001uTHL
na cuctemy lrypma- Jinysunns.



